Combining depth with appearance images for object detection using online learning
View/Open
Report (8,308Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeMaster thesis
Date2014-06
Rights accessRestricted access - author's decision
Abstract
This Master's Thesis presents a new developed algorithm that merges Appearance and Depth Images in order to perform the detection of objects in scenes. This new algorithm uses the approach of the Online Learning Random Ferns, proposed by Villamizar
et al at [1]. Although Villamizar's detector takes only into account appearance information (RGB), the new developed algorithm will also use depth images for creating a robust Object Detector. In this way, it has been studied the best method for combining both sources of information in the same algorithm (appearance and depth). Several approaches to solve this, have been created and tested through a set of experiments, studying its effects over different scenarios and parameters configuration.
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
VictorVaquero_TFM.pdf![]() | Report | 8,308Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder