dc.contributor | Delicado Useros, Pedro Francisco |
dc.contributor | Moisan, Lionel |
dc.contributor.author | Espuny Pujol, Ferran |
dc.date.accessioned | 2014-10-21T10:47:08Z |
dc.date.available | 2015-06-12T08:07:50Z |
dc.date.issued | 2014-06 |
dc.identifier.uri | http://hdl.handle.net/2099.1/23181 |
dc.description | Laboratoire MAP5 (Mathématiques appliquées Paris 5), CNRS UMR8145 Université Paris V - Paris Descartes |
dc.description.abstract | The fundamental matrix is a two-view tensor playing a central role in Computer Vision geometry. We address its robust estimation given pairs of matched image features, affected by noise and outliers, which searches for a maximal subset of correct matches and the associated fundamental matrix. Overcoming the broadly used parametric RANSAC method, ORSA follows a probabilistic a contrario approach to look for the set of matches being least expected with respect to a uniform random distribution of image points. ORSA lacks performance when this assumption is clearly violated. We will propose an improvement of the ORSA method, based on its same a contrario framework and the use of a non-parametric estimate of the distribution of image features. The role and estimation of the fundamental matrix and the data SIFT matches will be carefully explained with examples. Our proposal performs significantly well for common scenarios of low inlier ratios and local feature concentrations. |
dc.language.iso | eng |
dc.publisher | Universitat Politècnica de Catalunya |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa |
dc.subject.lcsh | Artificial intelligence |
dc.subject.other | Steriovision |
dc.subject.other | Fundamental matrix |
dc.subject.other | Robust matching |
dc.subject.other | SIFT |
dc.subject.other | A contrario |
dc.subject.other | Structure from motion |
dc.subject.other | Computer vision |
dc.title | Improving the A-Contrario computation of a fundamental matrix in computer vision |
dc.type | Master thesis |
dc.subject.lemac | Intel·ligència artificial |
dc.subject.ams | Classificació AMS::68 Computer science::68T Artificial intelligence |
dc.identifier.slug | FME-1055 |
dc.rights.access | Open Access |
dc.date.updated | 2014-07-09T06:38:39Z |
dc.audience.educationlevel | Màster |
dc.audience.mediator | Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística |
dc.audience.degree | MÀSTER UNIVERSITARI EN ESTADÍSTICA I INVESTIGACIÓ OPERATIVA (Pla 2006) |