Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.096 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari en Estadística i Investigació Operativa (UPC-UB)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari en Estadística i Investigació Operativa (UPC-UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving the A-Contrario computation of a fundamental matrix in computer vision

Thumbnail
View/Open
memoria.pdf (70,49Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2099.1/23181

Show full item record
Espuny Pujol, Ferran
Tutor / directorDelicado Useros, Pedro FranciscoMés informacióMés informacióMés informació; Moisan, Lionel
Document typeMaster thesis
Date2014-06
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The fundamental matrix is a two-view tensor playing a central role in Computer Vision geometry. We address its robust estimation given pairs of matched image features, affected by noise and outliers, which searches for a maximal subset of correct matches and the associated fundamental matrix. Overcoming the broadly used parametric RANSAC method, ORSA follows a probabilistic a contrario approach to look for the set of matches being least expected with respect to a uniform random distribution of image points. ORSA lacks performance when this assumption is clearly violated. We will propose an improvement of the ORSA method, based on its same a contrario framework and the use of a non-parametric estimate of the distribution of image features. The role and estimation of the fundamental matrix and the data SIFT matches will be carefully explained with examples. Our proposal performs significantly well for common scenarios of low inlier ratios and local feature concentrations.
Description
Laboratoire MAP5 (Mathématiques appliquées Paris 5), CNRS UMR8145 Université Paris V - Paris Descartes
SubjectsArtificial intelligence, Intel·ligència artificial
DegreeMÀSTER UNIVERSITARI EN ESTADÍSTICA I INVESTIGACIÓ OPERATIVA (Pla 2006)
URIhttp://hdl.handle.net/2099.1/23181
Collections
  • Màsters oficials - Màster universitari en Estadística i Investigació Operativa (UPC-UB) [401]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf70,49MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina