Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.060 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Computing (Pla 2006)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Computing (Pla 2006)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cartogram representations of self-organizing virtual geographies

Thumbnail
View/Open
Angela Martin.pdf (9,027Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2099.1/20771

Show full item record
Martín, Àngela
Tutor / directorVellido Alcacena, AlfredoMés informacióMés informacióMés informació
Document typeMaster thesis
Date2013-09-09
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Model interpretability is a problem for multivariate data in general and, very specifically, for dimensionality reduction techniques as applied to data visualization. The problem is even bigger for nonlinear dimensionality reduction (NLDR) methods, to which interpretability limitations are consubstantial. Data visualization is a key process for knowledge extraction from data that helps us to gain insights into the observed data structure through graphical representations and metaphors. NLDR techniques provide flexible visual insight, but the locally varying representation distor- tion they generate makes interpretation far from intuitive. For some NLDR models, indirect quantitative measures of this mapping distortion can be calculated explicitly and used as part of an interpretative post-processing of the results. In this Master Thesis, we apply a cartogram method, inspired on techniques of geographic representation, to the purpose of data visualization using NLDR models. In particular, we show how this method allows reintroducing the distortion, measured in the visual maps of several self-organizing clustering methods. The main capabilities and limitations of the cartogram visualization of multivariate data using standard and hierarchical self-organizing models were investigated in some detail with artificial data as well as with real information stemming from a neuro-oncology problem that involves the discrimination of human brain tumor types, a problem for which knowledge dis- covery techniques in general, and data visualization in particular should be useful tools.
SubjectsInformation visualization, Visualització de la informació
DegreeMÀSTER UNIVERSITARI EN COMPUTACIÓ (Pla 2006)
URIhttp://hdl.handle.net/2099.1/20771
Collections
  • Màsters oficials - Master in Computing (Pla 2006) [85]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Angela Martin.pdf9,027MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina