Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
66.623 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Artificial Intelligence - MAI (Pla 2006)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Artificial Intelligence - MAI (Pla 2006)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic classification of attention-deficit/hyperactivity disorder using brain activation

Thumbnail
View/Open
MMar Vila.pdf (3,431Mb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2099.1/16505

Show full item record
Vila Muñoz, Maria del Mar
Tutor / directorIgual Muñoz, Laura
Document typeMaster thesis
Date2012-09-04
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Nowadays, there is an active fi eld of research in neuroscience trying to fi nd relations between neurofunctional abnormalities of brain structures and neurological disorders. Previous statistical studies on brain functional Magnetic Resonance Images (fMRI) have found Attention Defi cit Hyperactivity Disorder (ADHD) patients are characterized by reduced activity in the inferior frontal gyrus (IFG) during response inhibition tasks and in the Ventral Striatum (VStr) during reward anticipation tasks. Interpreting brain image experiments using fMRI requires analysis of complex data and diff erent univariate or multivariate approaches can be chosen. Recently, one analysis approach that has grown in popularity is the use of machine learning algorithms to train classifiers to discriminate abnormal behavior or other variables of interest from fMRI data. The purpose of this work is to apply machine learning techniques to perform fMRI group analysis in an adult population. We propose a multivariate classifi er using diff erent discriminative features. Furthermore, we show how temporal information of fMRI data can be taken into account to improve the discrimination. We demonstrate that our new approach is able to diagnose the ADHD characteristics based on the activation in the executive functions. Previous results on the response inhibition task did not find di fferences between activation responses. Opposite to these results, we achieve accurate classifi cation performance for this task. Moreover, in this case, we show that classi fication rates can be signi cantly improved by incorporating temporal information into the classi fier.
SubjectsMachine learning, Brain--Imaging, Attention-deficit hiperactivity disorder, Aprenentatge automàtic, Cervell--Imatges, Trastorns de l'atenció
DegreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2009)
URIhttp://hdl.handle.net/2099.1/16505
Collections
  • Màsters oficials - Master in Artificial Intelligence - MAI (Pla 2006) [73]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
MMar Vila.pdf3,431MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina