Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
66.625 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Artificial Intelligence - MAI (Pla 2006)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Artificial Intelligence - MAI (Pla 2006)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmentation of brain MRI structures with deep machine learning

Thumbnail
View/Open
alberto_martinez_gonzalez.pdf (4,078Mb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2099.1/15836

Show full item record
Martínez González, Alberto
Tutor / directorIgual Muñoz, Laura
Document typeMaster thesis
Date2012-06-22
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Several studies on brain Magnetic Resonance Images (MRI) show relations between neuroanatomical abnormalities of brain structures and neurological disorders, such as Attention De fficit Hyperactivity Disorder (ADHD) and Alzheimer. These abnormalities seem to be correlated with the size and shape of these structures, and there is an active fi eld of research trying to find accurate methods for automatic MRI segmentation. In this project, we study the automatic segmentation of structures from the Basal Ganglia and we propose a new methodology based on Stacked Sparse Autoencoders (SSAE). SSAE is a strategy that belongs to the family of Deep Machine Learning and consists on a supervised learning method based on an unsupervisely pretrained Feed-forward Neural Network. Moreover, we present two approaches based on 2D and 3D features of the images. We compare the results obtained on the di fferent regions of interest with those achieved by other machine learning techniques such as Neural Networks and Support Vector Machines. We observed that in most cases SSAE improves those other methods. We demonstrate that the 3D features do not report better results than the 2D ones as could be thought. Furthermore, we show that SSAE provides state-of-the-art Dice Coe fficient results (left, right): Caudate (90.6+-3 1.4, 90.31 +-1.7), Putamen (91.03 +-1.4, 90.82+- 1.4), Pallidus (85.11+-1.8, 83.47 +-2.2), Accumbens (74.26+- 4.4, 74.46 +-4.6).
SubjectsMachine learning, Neural networks (Computer science), Brain--Magnetic resonance imaging, Aprenentatge automàtic, Xarxes neuronals (Informàtica), Cervell--Imatges per ressonància magnètica
DegreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2009)
URIhttp://hdl.handle.net/2099.1/15836
Collections
  • Màsters oficials - Master in Artificial Intelligence - MAI (Pla 2006) [73]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
alberto_martinez_gonzalez.pdf4,078MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina