Mostra el registre d'ítem simple

dc.contributorKildehöj Rasmussen, Lars
dc.contributorRuiz Boqué, Sílvia
dc.contributor.authorQuijada Ferrero, Raúl
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2011-07-28T08:21:32Z
dc.date.available2011-07-28T08:21:32Z
dc.date.issued2011-05-03
dc.identifier.urihttp://hdl.handle.net/2099.1/12717
dc.description.abstractThe concept of “smart” cars or intelligent vehicles is presented as one of the most promising solutions to reduce the high mortality rate that occurs on the world’s roads nowadays. Besides, the recent publication of standards as the European Standard for Intelligent Transportation System (ITS) or the international standard IEEE 802.11p confirm the importance of the future vehicle-to-vehicle or vehicle-to-infrastructure networks, which can diminish gridlocks or aid the driver with information about the road status or the weather forecast in order to prevent accidents, for instance. The main drawbacks of such intelligent network regarding the accident prevention lie in the presence of obstructing objects on the road or cars that do not implement this V2V system. Therefore, a radar application based on the used waveform for the V2V communication can be suitable as a direct method to avoid collisions. The aim of this thesis consists in the verification of the viability of a radar application in a V2V scenario. Thus, a thorough evaluation of the implemented V2V propagation channel has been performed so as to determine the main constraint factors, such as the power fading, Non Wide Sense Stationary Uncorrelated Scattering (NWSSUS) or the Doppler frequency, that can affect at detection and location application. From the conclusions obtained based on the characterization of a V2V channel, a radar algorithm has been designed as well as a tracking system. The design of the proposed radar algorithm is based on power peak detection that the estimated channel impulse response presents based on the reflected power originated by possible targets. The trilateration method is used for the location of these targets in the azimuth plane; thus, a Multiple Input Multiple Output system is required. In order to carry out this viability study, a MIMO structure 4x4 using OFDM with PSK or QAM as the modulation and over a real V2V propagation channel has been simulated. The Geometric Stochastic Channel Model (GSCM) is considered, since it contains most of the relevant channel-specific features; in particular it models the Non Wide Sense Stationary Uncorrelated Scattering (NWSSUS) behavior typical for such channels. Furthermore, the IEEE 802.11p standard has been implemented so as to simulate a scenario as close to reality as possible. The results obtained conclude with a positive result for the implemented scenarios. It is important to highlight that the extrapolation of this algorithm to other environments can lead to improvements or deteriorations of the probability of detection. However, the most valuable part of the thesis is the conclusion obtained for a radar implementation in a V2V scenario. The thesis is organized into 5 chapters. The first chapter provides an introduction, the second chapter explains the V2V implemented system, the third chapter contains the characterization of the V2V propagation channel, the forth chapter explains the radar and tracking system, while the fifth chapter presents the results of the proposed radar algorithm. Furthermore, at the end of the thesis some conclusions and future work are detailed.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Disseny i construcció de vehicles::Automòbils
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors::Protocols de comunicació
dc.subject.lcshSmart automobile
dc.subject.lcshTraffic safety
dc.subject.lcshAutomobiles--Electronic equipment
dc.subject.lcshIEEE 802.11 (Standard)
dc.subject.otherSmart cars
dc.subject.otherIEEE 802.11p
dc.subject.otherVehicle to vehicle networks
dc.subject.otherVehicle to infrastructure networks
dc.titleJoint radar and communication application for traffic safety system
dc.typeMaster thesis
dc.subject.lemacAutomòbils -- Equip elèctric
dc.subject.lemacProtocols de comunicació
dc.rights.accessOpen Access
dc.date.updated2011-07-28T06:10:30Z
dc.audience.educationlevelEstudis de primer/segon cicle
dc.audience.mediatorEscola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple