dc.contributor | Brankov, Jovan G. |
dc.contributor.author | Lain Condom, Marc |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
dc.date.accessioned | 2011-05-04T09:30:46Z |
dc.date.available | 2011-05-04T09:30:46Z |
dc.date.issued | 2011-02-21 |
dc.identifier.uri | http://hdl.handle.net/2099.1/11797 |
dc.description | Projecte final de carrera fet en col.laboració amb Illinois Institute of Technology |
dc.description.abstract | English: Digital image restoration plays a very important role in many fields such as
surveillance or medical imaging, where it can be used to obtain high-resolution
images so that a more accurate analysis can be performed. In this study we firstly
introduce the reader to classical image restoration techniques, such as the Inverse
filter or the Wiener filter. However, the main objective of this study is to evaluate a
new approach to digital image restoration, which is based on a mesh model of the
image. In order to create the mesh model, the digital image is non-uniformly sampled
with the use of an algorithm based on a feature map of the image and the classical
Floyd-Steinberg error-diffusion. As a result, the sampling is adapted to the content of
the image, so more samples are placed in areas with more image detail (highfrequency
areas) and less samples are placed in smooth regions (low-frequency
areas). The samples (also called mesh nodes) are then connected using the Delaunay
triangulation algorithm in order to form the mesh structure. An iterative least-squares
fitting algorithm is then used to calculate the intensity of the mesh elements in order
to obtain an accurate approximation of the image. The proposed method is an
effective image restoration technique for digital images degraded by blur and noise.
Moreover, the use of a content-adaptive mesh model (CAMM) means a compression
of the image, because less samples are needed in order to represent the image since
they are adapted to the image features. The results obtained demonstrate that the
adaptive mesh model method can outperform the classical image restoration
techniques presented in this study |
dc.language.iso | eng |
dc.publisher | Universitat Politècnica de Catalunya |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Ciències de la salut::Medicina::Diagnòstic per la imatge |
dc.subject.lcsh | Imaging systems in medicine |
dc.subject.other | Digital image restoration |
dc.subject.other | Inverse filter |
dc.subject.other | Wiener filter |
dc.subject.other | Mesh model |
dc.subject.other | Non- uniform sampling |
dc.subject.other | Floyd-Steinberg error-diffusion |
dc.subject.other | Delaunay triangulation |
dc.subject.other | Least- squares fitting. |
dc.subject.other | Procesado de imagen |
dc.subject.other | Imágenes médicas |
dc.subject.other | Imágenes digitales |
dc.subject.other | Modelado de imágenes |
dc.title | Content Adaptive Mesh Modeling |
dc.type | Master thesis (pre-Bologna period) |
dc.subject.lemac | Imatges mèdiques |
dc.identifier.slug | ETSETB-230.73682 |
dc.rights.access | Open Access |
dc.date.updated | 2011-04-11T13:58:26Z |
dc.audience.educationlevel | Estudis de primer/segon cicle |
dc.audience.mediator | Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona |
dc.audience.degree | ENGINYERIA DE TELECOMUNICACIÓ (Pla 1992) |
dc.contributor.covenantee | Illinois Institute of Technology |