Articles de revista
http://hdl.handle.net/2117/3790
2018-04-25T18:20:46ZPietro Mengoli (1627-1686), un matemàtic singular
http://hdl.handle.net/2117/115894
Pietro Mengoli (1627-1686), un matemàtic singular
Massa Esteve, Maria Rosa
Pietro Mengoli que a la seva època era anomenat el matemàtic bolonyès va ser un deixeble de Bonaventura Cavalieri (1598-1647) i va elaborar un nou mètode per calcular quadratures abans de Newton i Leibniz.
2018-04-04T06:31:49ZMassa Esteve, Maria RosaPietro Mengoli que a la seva època era anomenat el matemàtic bolonyès va ser un deixeble de Bonaventura Cavalieri (1598-1647) i va elaborar un nou mètode per calcular quadratures abans de Newton i Leibniz.Digital image analysis of yeast single cells growing in two different oxygen concentrations to analyze the population growth and to assist individual-based modeling
http://hdl.handle.net/2117/114065
Digital image analysis of yeast single cells growing in two different oxygen concentrations to analyze the population growth and to assist individual-based modeling
Ginovart Gisbert, Marta; Carbó Moliner, Rosa; Blanco Abellán, Mónica; Portell Canal, Xavier
Nowadays control of the growth of Saccharomyces to obtain biomass or cellular
wall components is crucial for specific industrial applications. The general aim of this
contribution is to deal with experimental data obtained from yeast cells and from
yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-Saccha
2018-02-12T17:23:51ZGinovart Gisbert, MartaCarbó Moliner, RosaBlanco Abellán, MónicaPortell Canal, XavierNowadays control of the growth of Saccharomyces to obtain biomass or cellular
wall components is crucial for specific industrial applications. The general aim of this
contribution is to deal with experimental data obtained from yeast cells and from
yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM-SacchaTerradas, el llenguatge com a component de la tècnica i la ciència
http://hdl.handle.net/2117/113825
Terradas, el llenguatge com a component de la tècnica i la ciència
Roca Rosell, Antoni Maria Claret
2018-02-07T07:07:19ZRoca Rosell, Antoni Maria ClaretAspectos matemáticos del triángulo armónico de Gottfried Wilhelm Leibniz (1646-1716)
http://hdl.handle.net/2117/107794
Aspectos matemáticos del triángulo armónico de Gottfried Wilhelm Leibniz (1646-1716)
Massa Esteve, Maria Rosa
Las matemáticas del siglo XVII florecieron debido a su algebrización y a la introducción del infinito. En este artículo presentamos una aproximación a una de sus figuras, Gottfried Wilhelm Leibniz (Leipzig, 1646 - Hannover, 1716). Se analizan también algunos aspectos matemáticos del triángulo armónico, nuevo objeto creado por Leibniz a partir del triángulo aritmético de Pascal, que muestran que el infinito se convierte en un elemento más en los cálculos matemáticos de Leibniz. Cabe destacar la utilidad de estos textos de Leibniz sobre el triángulo aritmético y el triángulo armónico, para la enseñanza de las matemáticas.
2017-09-20T05:29:00ZMassa Esteve, Maria RosaLas matemáticas del siglo XVII florecieron debido a su algebrización y a la introducción del infinito. En este artículo presentamos una aproximación a una de sus figuras, Gottfried Wilhelm Leibniz (Leipzig, 1646 - Hannover, 1716). Se analizan también algunos aspectos matemáticos del triángulo armónico, nuevo objeto creado por Leibniz a partir del triángulo aritmético de Pascal, que muestran que el infinito se convierte en un elemento más en los cálculos matemáticos de Leibniz. Cabe destacar la utilidad de estos textos de Leibniz sobre el triángulo aritmético y el triángulo armónico, para la enseñanza de las matemáticas.Effect of process parameters on progressive freeze concentration of sucrose solutions
http://hdl.handle.net/2117/104896
Effect of process parameters on progressive freeze concentration of sucrose solutions
Ojeda, A.; Moreno, F.L.; Ruiz, R.Y.; Blanco Abellán, Mónica; Raventós Santamaria, Mercè; Hernández Yáñez, Eduard
The progressive freeze concentration of sucrose solutions was tested. The effect of the initial concentration of the solution (C0), the temperature of the refrigerant (T) and the stirring speed (¿) on the final concentration of the solution was determined. The effects were significant on the freeze concentration, for both individual and combined effects. The maximum concentration achieved in the progressive freeze concentration was 53º Brix, when the initial concentration was 35º Brix, at a speed of 800 rpm and a temperature of refrigerant of -20°C. The best values of the concentration index are obtained at low concentrations, high stirring speed and low temperature. The average distribution coefficient increased with the initial concentration of the solution. The average yield parameter at different initial concentrations is around 0.6 kg ice·kg sol-1·h-1.
2017-05-26T09:16:32ZOjeda, A.Moreno, F.L.Ruiz, R.Y.Blanco Abellán, MónicaRaventós Santamaria, MercèHernández Yáñez, EduardThe progressive freeze concentration of sucrose solutions was tested. The effect of the initial concentration of the solution (C0), the temperature of the refrigerant (T) and the stirring speed (¿) on the final concentration of the solution was determined. The effects were significant on the freeze concentration, for both individual and combined effects. The maximum concentration achieved in the progressive freeze concentration was 53º Brix, when the initial concentration was 35º Brix, at a speed of 800 rpm and a temperature of refrigerant of -20°C. The best values of the concentration index are obtained at low concentrations, high stirring speed and low temperature. The average distribution coefficient increased with the initial concentration of the solution. The average yield parameter at different initial concentrations is around 0.6 kg ice·kg sol-1·h-1.El Marqués de L'Hospital y la rectificación de la curva logarítmica
http://hdl.handle.net/2117/104232
El Marqués de L'Hospital y la rectificación de la curva logarítmica
Blanco Abellán, Mónica
A finales de 1692, en su primera carta a Gottfried W. Le
ibniz (1646-1716), el Marqués de L’Hospital (1661-1704) determin
aba la longitud de arco de la curva logarítmica. Ese mismo año, L’Hospital ya había discutido este problema en sus cartas a Christiaan Huygens (1629-1695).
2017-05-09T11:34:45ZBlanco Abellán, MónicaA finales de 1692, en su primera carta a Gottfried W. Le
ibniz (1646-1716), el Marqués de L’Hospital (1661-1704) determin
aba la longitud de arco de la curva logarítmica. Ese mismo año, L’Hospital ya había discutido este problema en sus cartas a Christiaan Huygens (1629-1695).Pere Vieta (1779–1856), promoter of free public teaching of physics in Catalonia
http://hdl.handle.net/2117/101753
Pere Vieta (1779–1856), promoter of free public teaching of physics in Catalonia
Puig Pla, Carles
Free public teaching of physics in Catalonia started in the early 19th century, even if the interest in experimental physics goes back to the 18th century, where this discipline was discussed at various learned societies. The first chair of Physics in Barcelona was not a university chair but that of the Junta de Comerç de Barcelona (Trade Board of Barcelona), which had several scientific-technical Schools. In fact, at that time, Barcelona had no university, because it had been supressed by King Felipe V after the War of the Spanish Succession (ended in 1714). The promoter of free public teaching of experimental physics was Pere (Pedro) Vieta i Gibert (17791856), who was the first professor of that subject both at the School of the Trade Board and at the University of Barcelona, once it was restored in 1842. Vieta, who was a surgeon in the Army, combined his two professions and his interest in meteorology, he having recorded meteorological observations in Barcelona for many years. Many of his students were influential people in the scientific, intellectual, political and economic history of the 19th century in Catalonia and Spain. [Contrib Sci 11:237-247 (2015)]
2017-03-01T06:54:39ZPuig Pla, CarlesFree public teaching of physics in Catalonia started in the early 19th century, even if the interest in experimental physics goes back to the 18th century, where this discipline was discussed at various learned societies. The first chair of Physics in Barcelona was not a university chair but that of the Junta de Comerç de Barcelona (Trade Board of Barcelona), which had several scientific-technical Schools. In fact, at that time, Barcelona had no university, because it had been supressed by King Felipe V after the War of the Spanish Succession (ended in 1714). The promoter of free public teaching of experimental physics was Pere (Pedro) Vieta i Gibert (17791856), who was the first professor of that subject both at the School of the Trade Board and at the University of Barcelona, once it was restored in 1842. Vieta, who was a surgeon in the Army, combined his two professions and his interest in meteorology, he having recorded meteorological observations in Barcelona for many years. Many of his students were influential people in the scientific, intellectual, political and economic history of the 19th century in Catalonia and Spain. [Contrib Sci 11:237-247 (2015)]En record de Jacqueline (Jackie) Anne Stedall (1950-2014)
http://hdl.handle.net/2117/101066
En record de Jacqueline (Jackie) Anne Stedall (1950-2014)
Massa Esteve, Maria Rosa
2017-02-15T10:55:05ZMassa Esteve, Maria RosaL’IEC i els orígens de la recerca en ciències exactes
http://hdl.handle.net/2117/98201
L’IEC i els orígens de la recerca en ciències exactes
Roca Rosell, Antoni Maria Claret
2016-12-14T11:27:49ZRoca Rosell, Antoni Maria ClaretMengoli's mathematical ideas in Leibniz's excerpts
http://hdl.handle.net/2117/98199
Mengoli's mathematical ideas in Leibniz's excerpts
Massa Esteve, Maria Rosa
In the seventeenth century many changes occurred in the practice of mathematics. An essential change was the establishment of a symbolic language, so that the new language of symbols and techniques could be used to obtain new results. Pietro Mengoli (1626/7–86), a pupil of Cavalieri, considered the use of symbolic language and algebraic procedures essential for solving all kinds of problems. Following the algebraic research of Viète, Mengoli constructed a geometry of species, Geometriae Speciosae Elementa (1659), which allowed him to use algebra in geometry in complementary ways to solve quadrature problems, and later to compute the quadrature of the circle in his Circolo (1672). In a letter to Oldenburg as early as 1673, Gottfried Wilhelm Leibniz (1646–1716) expressed an interest in Mengoli's works, and again later in 1676, when he wrote some excerpts from Mengoli's Circolo. The aim of this paper is to show how in these excerpts Leibniz dealt with Mengoli's ideas as well as to provide new insights into Leibniz's mathematical interpretations and comments
2016-12-14T10:47:46ZMassa Esteve, Maria RosaIn the seventeenth century many changes occurred in the practice of mathematics. An essential change was the establishment of a symbolic language, so that the new language of symbols and techniques could be used to obtain new results. Pietro Mengoli (1626/7–86), a pupil of Cavalieri, considered the use of symbolic language and algebraic procedures essential for solving all kinds of problems. Following the algebraic research of Viète, Mengoli constructed a geometry of species, Geometriae Speciosae Elementa (1659), which allowed him to use algebra in geometry in complementary ways to solve quadrature problems, and later to compute the quadrature of the circle in his Circolo (1672). In a letter to Oldenburg as early as 1673, Gottfried Wilhelm Leibniz (1646–1716) expressed an interest in Mengoli's works, and again later in 1676, when he wrote some excerpts from Mengoli's Circolo. The aim of this paper is to show how in these excerpts Leibniz dealt with Mengoli's ideas as well as to provide new insights into Leibniz's mathematical interpretations and comments