Reports de recerca
http://hdl.handle.net/2117/3742
2021-05-12T02:51:39ZBoundary value problems for Schrödinger operators on a path
http://hdl.handle.net/2117/16111
Boundary value problems for Schrödinger operators on a path
Carmona Mejías, Ángeles; Encinas Bachiller, Andrés Marcos; Gago Álvarez, Silvia
In this work, we concentrate on determining explicit expressions, via suitable orthogonal polynomials on the line, for the Green function associated with any regular boundary value problem on a weighted path, whose weights are determined by the coefficients of the three terms recurrence relation defining the polynomials. Our study is similar to what is known for boundary value problems associated with ordinary differential equations.
2012-06-21T08:55:34ZCarmona Mejías, ÁngelesEncinas Bachiller, Andrés MarcosGago Álvarez, SilviaIn this work, we concentrate on determining explicit expressions, via suitable orthogonal polynomials on the line, for the Green function associated with any regular boundary value problem on a weighted path, whose weights are determined by the coefficients of the three terms recurrence relation defining the polynomials. Our study is similar to what is known for boundary value problems associated with ordinary differential equations.Betweenness-selfcentric graphs
http://hdl.handle.net/2117/15768
Betweenness-selfcentric graphs
Gago Álvarez, Silvia; Hurajová, Jana; Madaras, Tomas
The betweenness centrality of a vertex of a graph is the portion of shortest paths between all pairs of vertices passing through that vertex. In this paper, we study properties and constructions of graphs whose vertices have the same value of betweenness centrality.
2012-05-02T08:54:06ZGago Álvarez, SilviaHurajová, JanaMadaras, TomasThe betweenness centrality of a vertex of a graph is the portion of shortest paths between all pairs of vertices passing through that vertex. In this paper, we study properties and constructions of graphs whose vertices have the same value of betweenness centrality.Jacobi matrices and boundary value problems in distance-regular graphs
http://hdl.handle.net/2117/14821
Jacobi matrices and boundary value problems in distance-regular graphs
Bendito Pérez, Enrique; Carmona Mejías, Ángeles; Encinas Bachiller, Andrés Marcos; Gago Álvarez, Silvia
In this work we analyze regular boundary value problems on a distance-regular graph associated with SchrÄodinger operators. These problems include the cases in which the boundary has two or one vertices. Moreover, we obtain the Green matrix for each regular problem. In each case, the Green matrices are given in terms of two families of orthogonal polynomials one of them corresponding with the distance polynomials of the distance-regular graphs.
2012-01-26T10:21:55ZBendito Pérez, EnriqueCarmona Mejías, ÁngelesEncinas Bachiller, Andrés MarcosGago Álvarez, SilviaIn this work we analyze regular boundary value problems on a distance-regular graph associated with SchrÄodinger operators. These problems include the cases in which the boundary has two or one vertices. Moreover, we obtain the Green matrix for each regular problem. In each case, the Green matrices are given in terms of two families of orthogonal polynomials one of them corresponding with the distance polynomials of the distance-regular graphs.