Generative models for data augmentation on inertial measurement units data classification

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Capítol de llibre

Data publicació

Editor

IOS Press

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Diagnosis using time series data is an important area in medical domains. Machine learning models rely on large collections of data for successful generalisation. However, data collection in fields such as medicine is difficult, which limits the effectiveness of these models. Although techniques like data augmentation can help increase dataset sizes, they work best mainly with image data and not as well with other types of data. This is where generative models can fill this gap. We present a study of the application of a range of generative models (TimeGAN, WaveGAN, DDPM) and data inpainting models (SSSD, ExtraMAE) for time series on the domain of the classification of Inertial Measurement Units (IMUs). The aim is to assess their capabilities and the improvements obtained when used for data augmentation with different training and transfer learning methods. The results show that these methods generate synthetic data that, when added to the training data or used as pretraining data, improve accuracy. GAN methods lag behind diffusion denoising methods in generating realistic data, and are also more difficult to train. Inpainting methods obtained results similar to GAN methods but generated samples more similar to the real data and with a more stable training.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Llaurado, B. [et al.]. Generative models for data augmentation on inertial measurement units data classification. A: "Artificial intelligence research and development: proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence". Amsterdam: IOS Press, 2024, p. 68-77.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-64368-543-4

ISSN

Altres identificadors

Referències