Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Nature

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

We introduce a composite optical lattice created by two mutually rotated square patterns and allowing observation of continuous transformation between incommensurate and completely periodic structures upon variation of the rotation angle θ. Such lattices acquire periodicity only for rotation angles cosθ=a/c, sinθ=b/c, set by Pythagorean triples of natural numbers (a, b, c). While linear eigenmodes supported by lattices associated with Pythagorean triples are always extended, composite patterns generated for intermediate rotation angles allow observation of the localizationdelocalization transition of eigenmodes upon modification of the relative strength of two sublattices forming the composite pattern. Sharp delocalization of supported modes for certain θ values can be used for visualization of Pythagorean triples. The effects predicted here are general and also take place in composite structures generated by two rotated hexagonal lattices

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Huang, Changming [et al.]. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials. "Scientific Reports", 2 Setembre 2016, vol. 6, núm. 32546, p. 1-8.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

2045-2322

Altres identificadors

Referències