An automotive case study on the limits of approximation for object detection
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
The accuracy of camera-based object detection (CBOD) built upon deep learning is often evaluated against the real objects in frames only. However, such simplistic evaluation ignores the fact that many unimportant objects are small, distant, or background, and hence, their misdetections have less impact than those for closer, larger, and foreground objects in domains such as autonomous driving. Moreover, sporadic misdetections are irrelevant since confidence on detections is typically averaged across consecutive frames, and detection devices (e.g. cameras, LiDARs) are often redundant, thus providing fault tolerance. This paper exploits such intrinsic fault tolerance of the CBOD process, and assesses in an automotive case study to what extent CBOD can tolerate approximation coming from multiple sources such as lower precision arithmetic, approximate arithmetic units, and even random faults due to, for instance, low voltage operation. We show that the accuracy impact of those sources of approximation is within 1% of the baseline even when considering the three approximate domains simultaneously, and hence, multiple sources of approximation can be exploited to build highly efficient accelerators for CBOD in cars.
Descripció
Persones/entitats
Document relacionat
Versió de
Citació
Ajut
Forma part
Dipòsit legal
ISBN
ISSN
Versió de l'editor
Altres identificadors
Referències
Col·leccions
Computer Sciences - Articles de revista
Departament d'Arquitectura de Computadors - Articles de revista
CRAAX - Centre de Recerca d'Arquitectures Avançades de Xarxes - Articles de revista
Doctorat en Enginyeria Electrònica - Articles de revista
Departament d'Enginyeria Electrònica - Articles de revista


