Choosing strategies to deal with artifactual EEG data in children with cognitive impairment

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Comunicació de congrés

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Rett syndrome is a disease that involves acute cognitive impairment and, consequently, a complex and varied symptomatology. This study evaluates the EEG signals of twenty-nine patients in order to implement an effective classification method to find the optimal artifact reduction strategy in each case. The classification has been made based on the mean and standard deviation (SD), allowing to differentiate patients with stereotyped and constant movements from those with a greater number of spasm or sudden movements. Since the various signal patterns may require diverse treatments, two artifact reduction methods have been analyzed. The first oneis based on the distribution, using again the mean and SD, and the second one is based on an energy function which, theoretically, should be more robust to outliers and more stable to signal to noise ratio. The results confirm the existence of three groups of signals differentiated by having: low mean and low SD, high mean and low SD and high mean and high SD. However, despite finding three different patterns, the energy-based method is the one that works best for all them, offering adequate adaptation to each type of signal without losing robustness and stability. In conclusion, its implementation improves the detection of outliers without compromising artifact-free data segments, which allows to maintain the quality and quantity of the records.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Tost, A. [et al.]. Choosing strategies to deal with artifactual EEG data in children with cognitive impairment. A: Congreso Anual de la Sociedad Española de Ingeniería Biomédica. "XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica. Libro de Actas". 2020, p. 248-251. ISBN 978-84-09-25491-0.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

978-84-09-25491-0

ISSN

Versió de l'editor

Altres identificadors

Referències