A multidimensional data-driven sparse identification technique: the sparse proper generalized decomposition
Carregant...
Fitxers
El pots comprar en digital a:
El pots comprar en paper a:
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Article
Data publicació
Editor
Condicions d'accés
Accés obert
item.page.rightslicense
Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-data limit. We provide examples on the performance of the technique in up to ten dimensions.
Descripció
Persones/entitats
Document relacionat
Versió de
Citació
Ibáñez, R., Abisset, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J., Chinesta Soria, F. A multidimensional data-driven sparse identification technique: the sparse proper generalized decomposition. "Complexity", 1 Gener 2018, vol. 2018, p. 1-11.
Ajut
Forma part
Dipòsit legal
ISBN
ISSN
1076-2787

