El servei UPCommons està rebent un volum molt alt de trànsit per part de bots, fet que provoca pèrdues d’accés al contingut de manera periòdica i no planificada. Estem treballant per resoldre els problemes de rendiment causats pel rastreig excessiu del contingut del repositori per part dels bots i per restablir l’accés tan aviat com sigui possible. Demanem disculpes per qualsevol interrupció en l’accés que pugueu estar experimentant.

Proactive learning of cognitive exercises with a social robot

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Report de recerca

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

We introduce INtuitive PROgramming 2 (INPRO2), an improvement over our previous INPRO framework for learning board exercises via demonstrations. INPRO2 makes use of our Online Action Recognition through Unification (OARU) algorithm, which maintains and extends as needed a library of STRIPS action schemata that represent the dynamics, rules and goal of the exercise. OARU operates on a sequence of states shown by the user. Each state transition is either used to learn a new action, or is recognized as an instance of one action currently present in the library, possibly refining it. We have extended OARU to support negative examples (i.e. invalid moves that show forbidden state transitions) in order to increase the complexity of the exercises that can be learned. This new OARU's feature is exploited through another crucial element of INPRO2: its ability to proactively ask for the legality of certain moves to the user in critical situations, and fix overly permissive actions. We show an example of a typical INPRO2 learning session. We also outline a plan for a user study that will serve to assess the proactive behavior of the robot.

Descripció

Extended Abstract presentat al workshop de Prediction and Anticipation Reasoning in Human Robot Interaction (https://www.iri.upc.edu/workshops/pred-ant-hri/cfp.html), a la conferència ICRA 2022. Aquest article descriu un treball en progrés que es preveu afegir a la tesi. A dia d'aquesta descripció (15/07/2022), encara no s'ha publicat un enllaç al document presentat al workshop.

Persones/entitats

Document relacionat

Versió de

Citació

Suarez, A. [et al.]. Proactive learning of cognitive exercises with a social robot. 2022.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

Versió de l'editor

Altres identificadors

Referències