An A-infinity operad in spineless cacti
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
The d.g. operad C of cellular chains on the operad of spineless cacti is isomorphic to the Gerstenhaber-Voronov operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad F_2X of the surjection operad. Its homology is the Gerstenhaber operad G. We construct an operad map psi from A-infinity to C such that psi(m_2) is commutative and the homology of psi is the canonical map A \to Com \to G. This formalises the idea that, since the cup product is commutative in homology, its symmetrisation is a homotopy associative operation. Our explicit A-infinty structure does not vanish on non-trivial shuffles in higher degrees, so does not give a map from Com-infinity to C. If such a map could be written down explicitly, it would immediately lead to a G-infinity structure on C and on Hochschild cochains, that is, to a direct proof of the Deligne conjecture

