Robust Door Operation with the Toyota Human Support Robot. Robotic perception, manipulation and learning

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Correu electrònic de l'autor

miguel.arduengoEmail separatorgmail.com

Tribunal avaluador

Tipus de document

Treball Final de Grau

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Robots are progressively spreading to urban, social and assistive domains. Service robots operating in domestic environments typically face a variety of objects they have to deal with to fulfill their tasks. Some of these objects are articulated such as cabinet doors and drawers. The ability to deal with such objects is relevant, as for example navigate between rooms or assist humans in their mobility. The exploration of this task rises interesting questions in some of the main robotic threads such as perception, manipulation and learning. In this work a general framework to robustly operate different types of doors with a mobile manipulator robot is proposed. To push the state-of-the-art, a novel algorithm, that fuses a Convolutional Neural Network with point cloud processing for estimating the end-effector grasping pose in real-time for multiple handles simultaneously from single RGB-D images, is proposed. Also, a Bayesian framework that embodies the robot with the ability to learn the kinematic model of the door from observations of its motion, as well as from previous experiences or human demonstrations. Combining this probabilistic approach with state-of-the-art motion plannin

Descripció

Provinença

Titulació

GRAU EN ENGINYERIA FÍSICA/GRAU EN ENGINYERIA EN TECNOLOGIES INDUSTRIALS

Document relacionat

Localització

Citació

Ajut

DOI

Versió de l'editor

Altres identificadors

Referències