3D vehicle detection on an FPGA from LiDAR point clouds

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Association for Computing Machinery (ACM)

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

In this paper is presented a deep neural network architecture designed to run on a field-programmable gate array (FPGA) for detection vehicle on LIDAR point clouds. This works present a network based on VoxelNet adapted to run on an FPGA and to locate vehicles on point clouds from a 32 and a 64 channel optical sensor. For training the presented network the Kitti and Nuscenes dataset have been used. This work aims to motivate the usage of dedicated FPGA targets for training and validating neural network due to their accelerated computational capability compared to the well known GPUs. This platform also has some costraints that need to be assessed and taken care during development (limited memory e.g.). This research presents an implementation to overcome such limitations and obtain as good results as if a GPU would be used.

This paper makes use of a state-of-the-art dataset such us Nuscenes which is formed by several sensors and provides seven time more annotations than the KITTI dataset of the 6 cameras, 5 radars and 1 Lidar it is formed by, all with full 360 degree field of view. The presented work proves real-time performance and good detection accuracy when moving part of the CNN presented in the proposed architecture to a commercial FPGA.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Garcia , J.; Agudo, A.; Moreno-Noguer, F. 3D vehicle detection on an FPGA from LiDAR point clouds. A: ICWIP - International Conference on Watermarking and Image Processing. "2nd International Conference on Watermarking and Image Processing (ICWIP 2019)". New York: Association for Computing Machinery (ACM), 2019, p. 21-26.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-4503-7280-0

ISSN

Altres identificadors

Referències