IntPred: flexible, fast, and accurate object detection for autonomous driving systems

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Association for Computing Machinery (ACM)

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Deep Neural-Network (DNN) based Object Detection is one of the most important and time-consuming stages of Autonomous Driving software in cars. In non-critical domains, the performance and energy requirements of object detection can be reduced at the cost of accuracy in the detected objects. This is not the case in a critical domain like automotive, for which a delicate balance between performance/energy overheads and accuracy of object detection must be found. We propose IntPred to achieve such a balance by leveraging on the fact that, with high frame rates, objects do not move significantly across frames. IntPred tailors object interpolation for the case of object detection in autonomous driving frameworks, in line with approaches devised for other domains, thus heavily reducing the performance requirements of full-fledged DNN-based object prediction. IntPred results in comparable accuracy to the original object detection, while saving more than 70% of the computations. The latter allows using lower-performance and cheaper platforms resulting in saving energy and reducing heat dissipation: for instance, in an NVIDIA Jetson TX2 platform, specific for autonomous driving systems, our technique increases the frame processing rate by 4.6x. IntPred also allows consolidating additional applications onto the same platform.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Tabani, H. [et al.]. IntPred: flexible, fast, and accurate object detection for autonomous driving systems. A: ACM Symposium on Applied Computing. "The 35th Annual ACM Symposium on Applied Computing: Brno, Czech Republic, March 30-April 3, 2020". Association for Computing Machinery (ACM), 2020, p. 564-571.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-4503-6866-7

ISSN

Altres identificadors

Referències