Angular velocity analysis boosted by machine learning for helping in the differential diagnosis of Parkinson’s Disease and Essential Tremor
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Recent research has shown that smartphones/smartwatches have a high potential to help physicians to identify and differentiate between different movement disorders. This work aims to develop Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease and Essential Tremor. For this purpose, we use a mobile phone’s built-in gyroscope to record the angular velocity signals of two different arm positions during the patient’s follow-up, more precisely, in rest and posture positions. To develop and to find the best classification models, diverse factors were considered, such as the frequency range, the training and testing divisions, the kinematic features, and the classification method. We performed a two-stage kinematic analysis, first to differentiate between healthy and trembling subjects and then between patients with Parkinson’s Disease and Essential Tremor. The models developed reached an average accuracy of 97.2+/-3.7% (98.5% Sensitivity, 93.3% Specificity) to differentiate between Healthy and Trembling subjects and an average accuracy of 77.8+/-9.9% (75.7% Sensitivity, 80.0% Specificity) to discriminate between Parkinson’s Disease and Essential Tremor patients. Therefore, we conclude, that the angular velocity signal can be used to develop Machine Learning models for the differential diagnosis of Parkinson’s disease and Essential Tremor.
Descripció
Persones/entitats
Document relacionat
Versió de
Citació
Ajut
Forma part
Dipòsit legal
ISBN
ISSN
Versió de l'editor
Altres identificadors
Referències
Col·leccions
Departament d'Enginyeria mecànica - Articles de revista
GAECE - Grup d'Accionaments Elèctrics amb Commutació Electrònica - Articles de revista
Doctorat en Enginyeria Mecànica, Fluids i Aeronàutica - Articles de revista
LAM - Laboratori d'Aplicacions Multimèdia i TIC - Articles de revista

