Quantification of alloying elements in steel targets: The LIBS 2022 regression contest

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

We present the results of the regression contest organized for the LIBS 2022 conference. While the motivation and design of the contest are briefly presented, the work focuses on the methodologies of the three best-performing teams. The employed spectral preprocessing strategies, choice of regression models and its optimization are detailed for each team separately. The aim of the contest reflects the long-term challenges faced by quantitative laser-induced breakdown spectroscopy (LIBS) analysis. Thus, the contest was designed with the purpose of providing a transparent platform for comparing and evaluating the large range of data processing tools available in the LIBS literature. Namely, the contest consisted of the quantification of two major (Cr, Ni) and two minor (Mn, Mo) elements in 15 steel targets. For constructing an appropriate regression model, spectra of 42 targets were provided. The spectra were collected using a commercially available laboratory-based LIBS system and made publicly available. The contest lasted 53 days during which the teams did not receive feedback. In total, 21 teams participated out of which the three best-performing methodologies are presented here. A single linear partial least squares model and two artificial neural network regression models are presented. The corresponding feature selection strategies included emission line selection, spectral range selection, and automatized wavelength selection. Various spectral normalization strategies and data augmentation strategies are also presented.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Képes, E. [et al.]. Quantification of alloying elements in steel targets: The LIBS 2022 regression contest. "Spectrochimica acta. Part B, atomic spectroscopy", Agost 2023, vol. 206, núm. article 106710.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0584-8547

Altres identificadors

Referències