Automatic shoreline detection by processing planview timex images using bi-LSTM Networks

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

A new automatic shoreline detection method by using a bidirectional Long Short-Term Memory (bi-LSTM) Network that processes images column by column is presented. The model is trained on manually extracted shorelines from time-exposure video-images and is very robust against the selection of images for training. Thanks to the novelty of working with image columns, instead of with the whole image, the amount of labelled images for training is limited to a few tens or even less if the conditions are good. Moreover, this column approach makes the model to be robust to variable illuminated images and more easily interpretable, light and fast. There is a wide range of configuration parameters for the bi-LSTM layer by which the system works correctly, which facilitate to use the same network in different video stations. The highest accuracy is obtained by using CIELAB colour space. Without pre-processing the raw colour channels or defining a region of interest and without post-processing the obtained shorelines, the model demonstrates impressive accuracy with mean errors of 2.8 pixels (1.4 meters) in Castelldefels and 1.7 pixels (0.85 meters) in Barcelona.The method could also be effective for satellite shoreline detection by using as input channel the water index of the satellite detection techniques.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Marti-Puig, P. [et al.]. Automatic shoreline detection by processing planview timex images using bi-LSTM Networks. "Expert systems with applications", Abril 2024, núm. 240, article 122566, p. 1-18.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0957-4174

Referències