A construction of traceability set systems with polynomial tracing algorithm
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
A family F of w-subsets of a finite set X is called a set system with the identifiable parent property if for any w-subset contained in the union of some t sets, called traitors, of F at least one of these sets can be uniquely determined, i.e. traced. A set system with traceability property (TSS, for short) allows to trace at least one traitor by minimal distance decoding of the corresponding binary code, and hence the complexity of tracing procedure is of order O(M), where M is the number of users or the code's cardinality. We propose a new construction of TSS which is based on the old Kautz-Singleton concatenated construction with algebraic-geometry codes as the outer code and Guruswami-Sudan decoding algorithm. The resulting codes (set systems) have exponentially many users (codevectors) M and polylog(M) complexity of code construction and decoding, i.e. tracing traitors. This is the first construction of traceability set systems with such properties.
Descripció
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

