A deep Q-network-based algorithm for multi-connectivity optimization in heterogeneous cellular-networks †

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

The use of multi-connectivity has become a useful tool to manage the traffic in heterogeneous cellular network deployments, since it allows a device to be simultaneously connected to multiple cells. The proper exploitation of this technique requires to adequately configure the traffic sent through each cell depending on the experienced conditions. This motivates this work, which tackles the problem of how to optimally split the traffic among the cells when the multi-connectivity feature is used. To this end, the paper proposes the use of a deep reinforcement learning solution based on a Deep Q-Network (DQN) in order to determine the amount of traffic of a device that needs to be delivered through each cell, making the decision as a function of the current traffic and radio conditions. The obtained results show a near-optimal performance of the DQN-based solution with an average difference of only 3.9% in terms of reward with respect to the optimum strategy. Moreover, the solution clearly outperforms a reference scheme based on Signal to Interference Noise Ratio (SINR) with differences of up to 50% in terms of reward and up to 166% in terms of throughput for certain situations. Overall, the presented results show the promising performance of the DQN-based approach that establishes a basis for further research in the topic of multi-connectivity and for the application of this type of techniques in other problems of the radio access network

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Hernandez, J. [et al.]. A deep Q-network-based algorithm for multi-connectivity optimization in heterogeneous cellular-networks †. "Sensors (Basel, Switzerland)", 1 Agost 2022, vol. 22, núm. 16, article 6179, p. 1-19.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

14248220

Altres identificadors

Referències