Automatic deep learning-based pipeline for automatic delineation and measurement of fetal brain structures in routine mid-trimester ultrasound images

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Karger

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Introduction: The aim of this study was to develop a pipeline using state-of-the-art deep learning methods to automatically delineate and measure several of the most important brain structures in fetal brain ultrasound (US) images. Methods: The dataset was composed of 5,331 images of the fetal brain acquired during the routine mid-trimester US scan. Our proposed pipeline automatically performs the following three steps: brain plane classification (transventricular, transthalamic, or transcerebellar plane); brain structures delineation (9 different structures); and automatic measurement (from the structure delineations). The methods were trained on a subset of 4,331 images and each step was evaluated on the remaining 1,000 images. Results: Plane classification reached 98.6% average class accuracy. Brain structure delineation obtained an average pixel accuracy higher than 96% and a Jaccard index higher than 70%. Automatic measurements get an absolute error below 3.5% for the four standard head biometries (head circumference, biparietal diameter, occipitofrontal diameter, and cephalic index), 9% for transcerebellar diameter, 12% for cavum septi pellucidi ratio, and 26% for Sylvian fissure operculization degree. Conclusions: The proposed pipeline shows the potential of deep learning methods to delineate fetal head and brain structures and obtain automatic measures of each anatomical standard plane acquired during routine fetal US examination.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Coronado, D. [et al.]. Automatic deep learning-based pipeline for automatic delineation and measurement of fetal brain structures in routine mid-trimester ultrasound images. "Fetal diagnosis and therapy", 11 Agost 2023, vol. 50, núm. 6, p. 480-490.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

1421-9964

Altres identificadors

Referències