On the spectra and eigenspaces of the universal adjacency matrices of arbitrary lifts of graphs
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
The universal adjacency matrix U of a graph G, with adjacency matrix A, is a linear combination of A, the diagonal matrix D of vertex degrees, the identity matrix I, and the all-1 matrix J with real coefficients, that is, U=c1A+c2D+c3I+c4J, with ci¿R and c1¿0. Thus, in particular cases, U may be the adjacency matrix, the Laplacian, the signless Laplacian, and the Seidel matrix. In this paper, we develop a method for determining the universal spectra and bases of all the corresponding eigenspaces of arbitrary lifts of graphs (regular or not). As an example, the method is applied to give an efficient algorithm to determine the characteristic polynomial of the Laplacian matrix of the symmetric squares of odd cycles, together with closed formulas for some of their eigenvalues.
Descripció
This is an Accepted Manuscript of an article published by Taylor & Francis Group in Linear and multilinear algebra on 19 Febrer 2022, available online at: http://www.tandfonline.com/10.1080/03081087.2022.2042174.