Incremental novelty detection and fault identification scheme applied to a kinematic chain under non-stationary operation
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Projecte
Abstract
Classical methods for monitoring electromechanical systems lack two critical functions for effective industrial application: management of unexpected events and the incorporation of new patterns into the knowledge database. This study presents a novel, high-performance condition-monitoring method based on a four-stage incremental learning approach. First, non-stationary operation is characterised using normalised time-frequency maps. Second, operating novelties are detected using multivariate kernel density estimators. Third, the operating novelties are characterised and labelled to increase the knowledge available for subsequent diagnosis. Fourth, operating faults are diagnosed and classified using neural networks. The proposed method is validated experimentally with an industrial camshaft-based machine under a variety of operating conditions.


