Energy and cost footprint reduction for 5G and beyond with flexible radio access network
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
This paper focuses on Beyond fifth generation (B5G) non-linear data modeling and decision-making tools to optimize cost reduction versus coverage-QoS trade-off, in other words, the number of active Remote Radio Heads or Units (RRHs) needed according to traffic demands. The cost and energy optimization are analytically expressed by modeling the complex relationships between input and output system parameters using realistic scenarios and traffic profiles for low, medium, and high traffic environments. The optimization tool is based on a multi-objective integer linear programming model, designed to reduce the network cost while maintaining a good coverage-QoS and accounting for capacity constraints, User Equipments (UEs), and different slices. Results at 3.6 and 28 GHz are presented by analyzing and comparing several Cloud Radio Access Network (C-RAN) split options in a heterogeneous deployment with Macro-RRHs (MRRHs) and Small-RRHs (SRRHs). Cost reductions ranging from 30 % to 70 % have been obtained depending on the scenario. This proposal allows mobile network opera