Numerical tools for the analysis of parachutes
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Càtedra / Departament / Institut
Tipus de document
Data publicació
Editor
Part de
Condicions d'accés
item.page.rightslicense
Datasets relacionats
Projecte CCD
Abstract
The design and evaluation of parachute-payload systems is a technology field in which numerical analysis tools can make very important contributions. This work describes a new development from CIMNE in this area, a coupled fluid-structural solver for unsteady simulations of ram-air type parachutes. For an efficient solution of the aerodynamic problem, an unsteady panel method has been chosen exploiting the fact that large areas of separated flow are not expected under nominal flight conditions of ram-air parachutes. A dynamic explicit finite element solver is used for the structure. This approach yields a robust solution even when highly non-linear effects due to large displacements and material response are present. The numerical results show considerable accuracy and robustness. An added benefit of the proposed aerodynamic and structural techniques is that they can be easily vectored and thus suitable for use in parallel architectures. The main features of the computational tools are described and several numerical examples are provided to illustrate the performance and capabilities of the technique.

