A comparative study of different gradient approximations for Restricted Boltzmann Machines

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Correu electrònic de l'autor

Tribunal avaluador

Tipus de document

Projecte Final de Màster Oficial

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

This project consists of the theoretical study of Restricted Boltzmann Machines(RBMs) and focuses on the gradient approximations of RBMs. RBMs suffer from the dilemma of accurate learning with the exact gradient. Based on Contrastive Divergence(CD) and Markov Chain Monte Carlo(MCMC), CD-k, an efficient algorithm of approximating the gradients, is proposed and now it becomes the mainstream to train RBMs. In order to improve the algorithm efficiency and mitigate the bias existing in the approximation, many CD-related algorithms have emerged afterwards, such as Persistent Contrastive Divergence(PCD) and Weighted Contrastive Divergence(WCD). In this project the comprehensive comparison of the gradient approximation algorithms is presented, mainly including CD, PCD, WCD. The experimental results indicate that among all the conducted algorithms, WCD has the fastest and best convergence for parameter learning. Increasing the Gibbs sampling time and adding a persistent chain in CD-related can enhance the performance and alleviate the bias in the approximation, also taking advantage of Parallel Tempering can further improve the results. Moreover, the cosine similarity of approximating gradients and exact gradients is studied and it proves that CD series algorithms and WCD series algorithms are heterogeneous. The general conclusions in this project can be the reference when training RBMs.

Descripció

Provinença

Titulació

MÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)

Document relacionat

Citació

Ajut

DOI

Versió de l'editor

Altres identificadors

Referències