Use of bias correction techniques to improve seasonal forecasts for reservoirs — A case-study in northwestern Mediterranean

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Elsevier

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

In this paper, we have compared different bias correction methodologies to assess whether they could be advantageous for improving the performance of a seasonal prediction model for volume anomalies in the Boadella reservoir (northwestern Mediterranean). The bias correction adjustments have been applied on precipitation and temperature from the European Centre for Middle-range Weather Forecasting System 4 (S4). We have used three bias correction strategies: two linear (mean bias correction, BC, and linear regression, LR) and one non-linear (Model Output Statistics analogs, MOS-analog). The results have been compared with climatology and persistence. The volume-anomaly model is a previously computed Multiple Linear Regression that ingests precipitation, temperature and in-flow anomaly data to simulate monthly volume anomalies. The potential utility for end-users has been assessed using economic value curve areas. We have studied the S4 hindcast period 1981–2010 for each month of the year and up to seven months ahead considering an ensemble of 15 members. We have shown that the MOS-analog and LR bias corrections can improve the original S4. The application to volume anomalies points towards the possibility to introduce bias correction methods as a tool to improve water resource seasonal forecasts in an end-user context of climate services. Particularly, the MOS-analog approach gives generally better results than the other approaches in late autumn and early winter.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Marcos, R. [et al.]. Use of bias correction techniques to improve seasonal forecasts for reservoirs — A case-study in northwestern Mediterranean. "Science of The Total Environment", 1 Gener 2018, vol. 610-611, p. 64-74.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0048-9697

Altres identificadors

Referències