A numerical and 3D printing framework for the in vivo mechanical assessment of patient-specific cardiovascular structures

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Càtedra / Departament / Institut

Tipus de document

Text en actes de congrés

Data publicació

Editor

CIMNE

Part de

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Computational simulations represent a powerful tool for the pre-procedural clinical assessment of minimally invasive cardiovascular interventions [1]. Patient-specific simulations rely on the accurate numerical implementation of both geometrical and mechanical features. While current imaging techniques are able to depict accurately patient-specific anatomies, at date, a similar image-based tool capable to retrieve subject-specific material properties is missing. The scope of this study is to present a framework, involving in silico tools and 3D printing, for the refinement of an image-based technique [2] capable to retrieve in vivo patient-specific mechanical information from functional and morphological magnetic resonance imaging (MRI) data. The workflow consists in three main steps: (i) selection and mechanical testing of 3D commercially available deformable 3D printed materials; (ii) fluid-structure interaction (FSI) simulation of a vessel model under pulsatile regime; (iii) 3D printing of the model and experimental replica in MRI environment. Finally, the imagebased technique is applied to both numerical (ii) and MRI data (iii) to retrieve material information to compare to reference (i). The described workflow strategy was successfully implemented by our group. The deformable material TangBlackPlus FLX980 was selected and mechanically tested, resulting in an elastic module (E) of 0.50 0:02 MPa. A vessel model was designed for FSI simulations (E=0.50 MPa) as well as 3D printed with an Objet500 Connex machine (Stratasys, Minnesota, USA) to acquire MRI data. The image-based technique was used to retrieve the E value from numerical and experimental data. In silico, the indirect material evaluation resulted in E=0.49 MPa, while in vitro we found E=0.51 0:04 MPa. Moreover, other values of E (up to 32 MPa) were tested in silico, leading to matching results as well. Other deformable materials will be investigated, i.e. Agilus30 (Stratasys, Minnesota, USA) and Elastic and Flexible resins (Formlabs, Massachusetts, USA), by using the described framework. With further refinements, this strategy would lead to an indirect and image-based tool for the in vivo assessment of patient-specific material properties, thus enhancing the confidence of patient-specific computational models.

Descripció

Document relacionat

Citació

Fanni, B.M. [et al.]. A numerical and 3D printing framework for the in vivo mechanical assessment of patient-specific cardiovascular structures. A: Sim-AM 2019. "Sim-AM 2019 : II International Conference on Simulation for Additive Manufacturing". CIMNE, 2019, p. 31-39. ISBN 978-84-949194-8-0.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

978-84-949194-8-0

ISSN

Versió de l'editor

Altres identificadors

Referències