Beach profile evolution towards equilibrium from varying initial morphologies

dc.contributor.authorEichentopf, Sonja
dc.contributor.authorVan der Zanden, Joep
dc.contributor.authorCáceres Rabionet, Iván
dc.contributor.authorAlsina Torrent, José María
dc.contributor.groupUniversitat Politècnica de Catalunya. LIM/UPC - Laboratori d'Enginyeria Marítima
dc.contributor.otherUniversitat Politècnica de Catalunya. Laboratori d'Enginyeria Marítima
dc.date.accessioned2020-01-07T11:25:25Z
dc.date.available2020-01-07T11:25:25Z
dc.date.issued2019-11
dc.description.abstractThe evolution of different initial beach profiles towards the same final beach configuration is investigated based on large-scale experimental data. The same wave condition was performed three times, each time starting from a different initial profile morphology. The three different initial profiles are an intermediate energy profile with an offshore bar and a small swash berm, a plane profile and a low energy profile with a large berm. The three cases evolve towards the same final (equilibrium) profile determined by the same wave condition. This implies that the same wave condition generates different sediment transport patterns. Largest beach changes and differences in hydrodynamics occur in the beginning of the experimental cases, highlighting the coupling between morphology and hydrodynamics for beach evolution towards the same profile. The coupling between morphology and hydrodynamics that leads to the same final beach profile is associated with differences in sediment transport in the surf and swash zone, and is explained by the presence of bar and berm features. A large breaker bar and concave profile promote wave energy dissipation and reduce the magnitudes of the mean near-bed flow velocity close to the shoreline limiting shoreline erosion. In contrast, a beach profile with reflective features, such as a large berm and a small or no bar, increases negative velocity magnitudes at the berm toe promoting shoreline retreat. The findings are summarised in a conceptual model that describes how the beach changes towards equilibrium from two different initial morphologies.
dc.description.peerreviewedPeer Reviewed
dc.description.versionPostprint (published version)
dc.identifier.citationEichentopf, S. [et al.]. Beach profile evolution towards equilibrium from varying initial morphologies. "Journal of marine science and engineering", Novembre 2019, vol. 7, núm. 11, p. 406:1-406:20.
dc.identifier.doi10.3390/jmse7110406
dc.identifier.issn2077-1312
dc.identifier.urihttps://hdl.handle.net/2117/174283
dc.language.isoeng
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654110/EU/HYDRALAB+ Adapting to climate change/HYDRALAB-PLUS
dc.relation.publisherversionhttps://www.mdpi.com/2077-1312/7/11/406
dc.rights.accessOpen Access
dc.rights.licensenameAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Enginyeria hidràulica, marítima i sanitària::Ports i costes
dc.subject.lcshCoast changes
dc.subject.lemacCanvis costaners
dc.subject.otherBeach equilibrium
dc.subject.otherInitial morphology
dc.subject.otherLarge-scale experiments
dc.subject.otherBeach erosion
dc.subject.otherBeach recovery
dc.subject.otherSediment transport
dc.titleBeach profile evolution towards equilibrium from varying initial morphologies
dc.typeArticle
dspace.entity.typePublication
local.citation.authorEichentopf, S.; Van der Zanden, J.; Caceres, I.; Alsina, J.
local.citation.endingPage406:20
local.citation.number11
local.citation.publicationNameJournal of marine science and engineering
local.citation.startingPage406:1
local.citation.volume7
local.identifier.drac26245685

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
26245685.pdf
Mida:
2.82 MB
Format:
Adobe Portable Document Format