Comparative analysis of geolocation information through mobile-devices under different COVID-19 mobility restriction patterns in Spain
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Projecte
info:eu-repo/grantAgreement/SPAIN/LCF/PR/GN17/50300003
ANALISIS DE DATOS MULTIESCALA EN CARDIOLOGIA TRASLACIONAL: DE LOS MECANISMOS BASICOS A LA CONTRACCION CARDIACA (AEI-SAF2017-88019-C3-3-R)
SoBigData-PlusPlus - SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics (EC-H2020-871042)
Abstract
The COVID-19 pandemic is changing the world in unprecedented and unpredictable ways. Human mobility, being the greatest facilitator for the spread of the virus, is at the epicenter of this change. In order to study mobility under COVID-19, to evaluate the efficiency of mobility restriction policies, and to facilitate a better response to future crisis, we need to understand all possible mobility data sources at our disposal. Our work studies private mobility sources, gathered from mobile-phones and released by large technological companies. These data are of special interest because, unlike most public sources, it is focused on individuals rather than on transportation means. Furthermore, the sample of society they cover is large and representative. On the other hand, these data are not directly accessible for anonymity reasons. Thus, properly interpreting its patterns demands caution. Aware of that, we explore the behavior and inter-relations of private sources of mobility data in the context of Spain. This country represents a good experimental setting due to both its large and fast pandemic peak and its implementation of a sustained, generalized lockdown. Our work illustrates how a direct and naive comparison between sources can be misleading, as certain days (e.g., Sundays) exhibit a directly adverse behavior. After understanding their particularities, we find them to be partially correlated and, what is more important, complementary under a proper interpretation. Finally, we confirm that mobile-data can be used to evaluate the efficiency of implemented policies, detect changes in mobility trends, and provide insights into what new normality means in Spain.
Descripció
Persones/entitats
Document relacionat
Versió de
Citació
Ajut
Forma part
Dipòsit legal
ISBN
ISSN
Versió de l'editor
Altres identificadors
Referències
Col·leccions
Computer Sciences - Articles de revista
Departament de Física - Articles de revista
Departament de Ciències de la Computació - Articles de revista
BIOCOM-SC - Biologia Computacional i Sistemes Complexos - Articles de revista
KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Articles de revista


