Automatic detection and classification of coastal Mediterranean fish from underwater images: good practices for robust training

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Frontiers Media

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Further investigation is needed to improve the identification and classification of fish in underwater images using artificial intelligence, specifically deep learning. Questions that need to be explored include the importance of using diverse backgrounds, the effect of (not) labeling small fish on precision, the number of images needed for successful classification, and whether they should be randomly selected. To address these questions, a new labeled dataset was created with over 18,400 recorded Mediterranean fish from 20 species from over 1,600 underwater images with different backgrounds. Two state-of-the-art object detectors/classifiers, YOLOv5m and Faster RCNN, were compared for the detection of the ‘fish’ category in different datasets. YOLOv5m performed better and was thus selected for classifying an increasing number of species in six combinations of labeled datasets varying in background types, balanced or unbalanced number of fishes per background, number of labeled fish, and quality of labeling. Results showed that i) it is cost-efficient to work with a reduced labeled set (a few hundred labeled objects per category) if images are carefully selected, ii) the usefulness of the trained model for classifying unseen datasets improves with the use of different backgrounds in the training dataset, and iii) avoiding training with low-quality labels (e.g., small relative size or incomplete silhouettes) yields better classification metrics. These results and dataset will help select and label images in the most effective way to improve the use of deep learning in studying underwater organisms.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Catalán, I. [et al.]. Automatic detection and classification of coastal Mediterranean fish from underwater images: good practices for robust training. "Frontiers in marine science", 5 Abril 2023, vol. 10. Article n. 1151758.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

2296-7745

Altres identificadors

Referències