Exponentially small splitting of separatrices beyond Melnikov analysis: rigorous results

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Report de recerca

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

In this paper we study the problem of exponentially small splitting of separatrices of one degree of freedom classical Hamiltonian systems with a non-autonomous perturbation which is fast and periodic in time. We provide a result valid for general systems which are polynomials or trigonometric polynomials in the state variables. Our result consists in obtaining a rigorous proof of the asymptotic formula for the measure of the splitting. We have obtained that the splitting has the asymptotic behavior K" e−a/" identifying the constants K, and a in terms of the features of the system. The study of our problem leads us to consider several cases. In some cases, assuming the per- turbation is small enough, it turns out that the values of K, coincides with the classical Melnikov approach. We have identified the limit size of the perturbation for which this classical theory holds true. However for the limit cases, which appear naturally both in averaging theory and bifurcation theory, we encounter that, generically, neither K nor are actually well predicted by Melnikov theory.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Ajut

Forma part

[prepr201101BalFGMS]

DOI

Dipòsit legal

ISBN

ISSN

Altres identificadors

Referències