S4 - Machine learning based soft error rate estimation of pass transistor logic in high-speed communication

Carregant...
Miniatura

Fitxers

S4-1.pdf (1.02 MB) (Accés restringit)
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Càtedra / Departament / Institut

Tipus de document

Text en actes de congrés

Data publicació

Editor

Part de

Condicions d'accés

Accés restringit per política de l'editorial

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Recent advanced high-speed communication systems, such as optical systems, require highest reliability at lowest possible power consumption. Thus, Pass Transistor Logic (PTL) is gaining lots of interest in these communication systems due to its power saving potential compared to traditional CMOS logic. However, due to the non-conventional logic structure, its susceptibility to radiation-induced soft errors is different from CMOS circuitry. Due to the unique generation and propagation of Single Event Transients (SETs) in PTL, different approaches for PTL soft error rate (SER) estimation are required. In this paper we propose a machine learning (ML) approach for SET propagation in PTL logic. Multi-layer feed-forward neural network together with support vector classifier (SVC) are used to build the SET pulse width and pulse amplitude models. Bayesian optimization using Gaussian Processes is utilized to tune the hyperparameters of neural network. The experimental results on full adder (FA), which is the key component in many large cirucits such as ALU, and comparison with Monte Carlo (MC) spectre simulations confirm the accuracy and speed of the proposed method.

Descripció

Document relacionat

Citació

Zhang, Z. [et al.]. S4 - Machine learning based soft error rate estimation of pass transistor logic in high-speed communication. A: 27th IEEE European Test Symposium (ETS). 2022,

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

Altres identificadors

Referències