Gaussian-process-based robot learning from demonstration
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Learning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting the potential that Gaussian process (GP) models offer, we unify in a single, entirely GP-based framework, the main features required for a state-of-the-art LfD approach. We address how GP can be used to effectively learn a policy from trajectories in task space. To achieve an effective generalization across demonstrations, we propose the novel Task Completion Index (TCI) for temporal alignment of task trajectories. Also, our probabilistic GP-based representation allows encoding variability throughout the different phases of the task. Finally, we present a method to efficiently adapt the policy to fulfill new requirements and modulate the robot behavior as a function of task variability. This approach has been successfully tested in a real-world application, namely teaching a TIAGo robot to open different types of doors.
Descripció
© The Author(s) 2023. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This article is licensed under a Creative Commons Attri- bution 4.0 International License,