Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

ACM

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

The unabated increase in the complexity of the hardware and software components of modern embedded real-time systems has given momentum to a host of research in the use of probabilistic and statistical techniques for timing analysis. In the last few years, that front of investigation has yielded a body of scientific literature vast enough to warrant some comprehensive taxonomy of motivations, strategies of application, and directions of research. This survey addresses this very need, singling out the principal techniques in the state of the art of timing analysis that employ probabilistic reasoning at some level, building a taxonomy of them, discussing their relative merit and limitations, and the relations among them. In addition to offering a comprehensive foundation to savvy probabilistic timing analysis, this article also identifies the key challenges to be addressed to consolidate the scientific soundness and industrial viability of this emerging field.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Cazorla, F. J. [et al.]. Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey. "ACM Computing Surveys (CSUR)", 1 Febrer 2019, vol. 52, núm. 1.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0360-0300

Altres identificadors

Referències