A methodology for selective protection of matrix multiplications: A diagnostic coverage and performance trade-off for CNNs executed on GPUs

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

The ability of CNNs to efficiently and accurately perform complex functions, such as object detection, has fostered their adoption in safety-related autonomous systems. These algorithms require high computational performance platforms that exploit high levels of parallelism. The detection, control and mitigation of random errors in these underlying high computational platforms become a must according to functional safety standards. In this paper, we propose protecting, with a catalog of diagnostic techniques, the most computationally expensive operation of the CNNs, the matrix multiplication. However, this protection entails a performance penalty, and the complete CNN protection may be unaffordable for those systems operating with strict real-time constraints. This paper proposes a three-stage methodology to selectively protect CNN layers to achieve the required diagnostic coverage and performance trade-off: i) sensitivity analysis to misclassification per CNN layers using a statistical fault injection campaign, ii) layer-by- layer performance impact and diagnostic coverage analysis, and iii) selective layer protection. Furthermore, we propose a strategy to effectively compute the achievable diagnostic coverage of large matrices implemented on GPUs. Finally, we apply the proposed methodology and strategy in Tiny YOLO-v3, an object detector based on CNNs.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Fernández, J. [et al.]. A methodology for selective protection of matrix multiplications: A diagnostic coverage and performance trade-off for CNNs executed on GPUs. A: International Conference on System Reliability and Safety. "2022 6th International Conference on System Reliability and Safety (ICSRS): November 23-25, 2022, Venice, Italy". Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 9-18. ISBN 978-1-6654-7092-6. DOI 10.1109/icsrs56243.2022.10067299.

Ajut

Forma part

Dipòsit legal

ISBN

978-1-6654-7092-6

ISSN

Altres identificadors

Referències