Mechanochemically activated Au/CeO2 for enhanced CO oxidation and COPrOx reaction
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Editor
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
COPrOx reaction is one of the particularly appealing and cost-effective solutions for the selective oxidation of CO in hydrogen-rich gas streams to meet the stringent requirement of the current electrocatalysts employed in low-temperature fuel cells. Herein, we synthesized ultrasmall Au clusters supported on ceria by one-step solvent-free mechanochemical method. These catalysts exhibited higher activity for COPrOx and CO oxidation compared to the sample prepared by conventional incipient wetness impregnation. The unique Au-Ce interaction caused by impact and friction between the ball, vessel, and powders, greatly promotes the generation of positive charged Aud+ active sites and, at the same time, the reducibility of the catalyst. Interestingly, an aging treatment of the ball-milled samples resulted in a significant superior performance of the catalytic activity. This enhancement has been attributed to a change in the oxidation state of Au between the fresh and the aged catalysts prepared by ball milling.


