Prompt engineering for medical foundational models

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Correu electrònic de l'autor

Tutor / director

Tribunal avaluador

Realitzat a/amb

Tipus de document

Projecte Final de Màster Oficial

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Foundational models have rapidly emerged in recent years, demonstrating remarkable capabilities across a wide array of tasks, predominantly in natural language processing. Significant efforts have been dedicated to this field, resulting in the frequent release of new, increasingly sophisticated models. This thesis explores the efficacy of advanced prompting strategies applied to these foundational models within the medical question-answering domain, focusing on the potential of open-source models enhanced through sophisticated prompt engineering. An efficient and functional evaluation framework, named "prompt_engine", has been developed to study the potential of two prompting strategies: Self-Consistency Chain of Thought and a Medprompt-based technique. Through this framework, a comprehensive range of experiments was conducted, leading to significant performance enhancements through the strategic combination and optimization of these prompting techniques. Key findings reveal that the performance of open-source models can be significantly enhanced, allowing them to outperform current state-of-the-art private models in existing medical question-answering benchmarks.

Descripció

Provinença

Titulació

MÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)

Document relacionat

Citació

Ajut

DOI

Versió de l'editor

Altres identificadors

Referències