Using AI techniques to determine promoter location based on DNA structure calculations

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Correu electrònic de l'autor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Projecte Final de Màster Oficial

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 2.5

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

DNA sequencing projects have started the race to fully annotate complete genomes, including the human one. Despite that, little is known about genetic regulation, the mechanisms that control where and when the genes are expressed, and promoters are maybe the most important of these mechanisms. An increasing number of studies have been focused on the DNA molecule and its structure. This has lead to a set of physical properties which can be computed from mathematical models, and describe some aspects of this molecule. Unfortunately, the existing tools are scattered through the different web sites of many research groups, and extracting data with them is still very unpleasant. The first part of this thesis presents DNAlive, a new platform to calculate DNA physical properties, showing the results in a visual and useful way for genetic researchers, cross-linking the data with external databases. For the second part, a full study of DNA physical descriptors has been performed, revealing significative similarities between them. Using that data, a set of neural networks has been developed to detect promoters on a DNA sequence. The resulting software is the second version of ProStar, the MMB group's1 latest promoter predictor.

Descripció

Provinença

Titulació

MÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2009)

Document relacionat

Citació

Ajut

DOI

Versió de l'editor

Altres identificadors

Referències