Engineering high quality graphene superlattices via ion milled ultra-thin etching masks
Fitxers
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Projecte
2D-SIPC - Two-dimensional quantum materials and devices for scalable integrated photonic circuits (EC-H2020-820378)
TOPONANOP - Topological nano-photonics (EC-H2020-726001)
ICFOstepstone - ICFOstepstone PhD Programme for Early-Stage Researchers in Photonics (EC-H2020-665884)
PROBIST - COFUND BIST POSTDOCTORAL FELLOWSHIP PROGRAMME (EC-H2020-754510)
BlochTG - Bloch Oscillations, Wannier-Stark Localisation and Coherent Terahertz Emission in Twisted Graphene Superlattices (EC-H2020-893030)
NanoMagnO - Nano-Magnetic Oscillators (EC-H2020-887367)
NaTuRe - Nanotube Mechanical Resonator, Spin, and Superfluidity (EC-H2020-692876)
SUPERCONDUCTIVIDAD Y NEMS (AEI-RTI2018-097953-B-I00)
ENLIGHTEN - ENhanced PhD Fellowship Programme in the Sciences of LIGHT (EC-H2020-847517)
CNTQUBIT - Carbon nanotube based nanomechanical qubit (EC-H2020-101023289)
QUANTUM SENSING WITH NONCLASSICAL MECHANICAL OSCILLATORS (AEI-PCI2022-132951)
NANO-VISUALIZACION EN THZ DE MATERIALES 2D RETORCIDOS (AEI-PID2019-106875GB-I00)
-106875
Abstract
Nanofabrication research pursues the miniaturization of patterned feature size. In the current state of the art, micron scale areas can be patterned with features down to ~30¿nm pitch using electron beam lithography. Here, we demonstrate a nanofabrication technique which allows patterning periodic structures with a pitch down to 16¿nm. It is based on focused ion beam milling of suspended membranes, with minimal proximity effects typical to standard electron beam lithography. The membranes are then transferred and used as hard etching masks. We benchmark our technique by electrostatically inducing a superlattice potential in graphene and observe bandstructure modification in electronic transport. Our technique opens the path towards the realization of very short period superlattices in 2D materials, but with the ability to control lattice symmetries and strength. This can pave the way for a versatile solid-state quantum simulator platform and the study of correlated electron phases.