An e-Learning toolbox based on rule-based fuzzy approaches

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Multidisciplinary Digital Publishing Institute

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement 4.0 Internacional

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

In this paper, an e-Learning toolbox based on a set of fuzzy logic data mining techniques is presented. The toolbox is mainly based on the fuzzy inductive reasoning (FIR) methodology and two of its key extensions: (i) the linguistic rules extraction algorithm (LR-FIR), which extracts comprehensible and consistent sets of rules describing students’ learning behavior, and (ii) the causal relevance approach (CR-FIR), which allows to reduce uncertainty during a student’s performance prediction stage, and provides a relative weighting of the features involved in the evaluation process. In addition, the presented toolbox enables, in an incremental way, detecting and grouping students with respect to their learning behavior, with the main goal to timely detect failing students, and properly provide them with suitable and actionable feedback. The proposed toolbox has been applied to two different datasets gathered from two courses at the Latin American Institute for Educational Communication virtual campus. The introductory and didactic planning courses were analyzed using the proposed toolbox. The results obtained by the functionalities offered by the platform allow teachers to make decisions and carry out improvement actions in the current course, i.e., to monitor specific student clusters, to analyze possible changes in the different evaluable activities, or to reduce (to some extent) teacher workload.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Nebot, A.; Múgica, F.; Castro, F. An e-Learning toolbox based on rule-based fuzzy approaches. "Applied sciences", 28 Setembre 2020, vol. 10, núm. 19, p. 1-21.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

2076-3417

Altres identificadors

Referències