A new method to determine the optimal thin layer ionospheric height and its application in the polar regions
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
In this paper, a feasibility study of a microwave antenna-based sensor is proposed for in vitro experiments for monitoring blood glucose levels. The proposed device consists of a square-ring incorporated within a fully textile monopole antenna to absorb and sense different glucose concentrations, covering patients with different diabetic conditions. The designed antenna-sensor is optimized to operate at 2.4 GHz. The sensing principle is based on the resonance frequency shift of the reflection response of the antenna-based sensor under different glucose levels. The experiments were carried out with blood mimicking by means of aqueous solutions, using D(+)- glucose/water in different concentrations for various diabetic conditions of type-2 diabetes. The performance of the embroidered antenna-based sensor is characterized and validated using a convenient setup for in vitro measurements. The results demonstrated the ability of the proposed antenna-based sensor to cover all the glucose levels of the diabetes range, including hypoglycemia (10–70 mg/dL), normoglycemia (80–110 mg/dL) and hyperglycemia (130–190 mg/dL) with a sensitivity of 350 kHz/(mg/dL). Besides its ability to detect different glucose concentrations of various diabetic conditions, the proposed antenna-sensor presents diverse features such as a simplistic design, compact size, wearability and low cost. The proposed textile device demonstrates a proof of concept for efficient in vitro blood glucose level measurements and diagnostics of diabetes.