Video-based fruit detection and tracking for apple counting and mapping

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

Automatic fruit counting systems have garnered interest from farmers and agronomists to monitor fruit production, predict yields in advance, and identify production variability across orchards. However, accurately counting fruits poses challenges, particularly due to occlusions. This study proposes a multi-view sensing approach using continuous motion videos captured by a camera moved along the row of trees, followed by fruit detection in all video frames and application of Multi-Object Tracking (MOT) algorithms to prevent double-counting. Three tracking methods, namely SORT, DeepSORT, and ByteTrack, are compared for fruit counting using the YOLOv5x object detector. The methodology is applied to map fruit production in an experimental apple orchard at two different dates: four weeks and one week before harvest. The results demonstrate that ByteTrack (MOTA=0.682; IDF1=0.837; HOTA=0.689) outperforms SORT and DeepSORT, indicating its superior tracking performance. Computational efficiency analysis reveals similar processing times between SORT and ByteTrack (about 15 ms), while DeepSORT requires significantly more processing time per image (128 ms). Fruit counting evaluation shows reasonably accurate yield predictions on both dates, with reduced errors and improved performance closer to the harvest date (MAPE=7.47 %; R2=0.70). The system proves effective in estimating orchard fruit production using computer vision technology, offering valuable insights for yield forecasting. These findings contribute to optimizing fruit production and supporting precision agriculture practices. The code and the dataset have been made publicly available and a video visualization of results is accessible at http://www.grap.udl.cat/en/publications/video_fruit_counting.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Gené, J. [et al.]. Video-based fruit detection and tracking for apple counting and mapping. A: IEEE International Workshop on Metrology for Agriculture and Forestry. "2023 IEEE International Workshop on Metrology for Agriculture and Forestry: November 6-8, 2023, Pisa, Italy: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2023, p. 301-306. ISBN 979-8-3503-1272-0. DOI 10.1109/MetroAgriFor58484.2023.10424135.

Ajut

Forma part

Dipòsit legal

ISBN

979-8-3503-1272-0

ISSN

Altres identificadors

Referències