Software development metrics prediction using time series methods

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Springer

Condicions d'accés

Accés obert

item.page.rightslicense

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització de la persona titular dels drets

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

The software development process is an intricate task, with the growing complexity of software solutions and inflating code-line count being part of the reason for the fall of software code coherence and readability thus being one of the causes for software faults and it’s declining quality. Debugging software during development is significantly less expensive than attempting damage control after the software’s release. An automated quality-related analysis of developed code, which includes code analysis and correlation of development data like an ideal solution. In this paper the ability to predict software faults and software quality is scrutinized. Hereby we investigate four models that can be used to analyze time-based data series for prediction of trends observed in the software development process are investigated. Those models are Exponential Smoothing, the Holt-Winters Model, Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Networks (RNN). Time-series analysis methods prove a good fit for software related data prediction. Such methods and tools can lend a helping hand for Product Owners in their daily decision-making process as related to e.g. assignment of tasks, time predictions, bugs predictions, time to release etc. Results of the research are presented.

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Choras, M. [et al.]. Software development metrics prediction using time series methods. A: International Conference on Computer Information Systems and Industrial Management Applications. "Computer Information Systems and Industrial Management, 18th International Conference, CISIM 2019: Belgrade, Serbia, September 19–21, 2019: proceedings". Berlín: Springer, 2019, p. 311-323.

Ajut

Forma part

Dipòsit legal

ISBN

978-3-030-28957-7

ISSN

Altres identificadors

Referències