Cell-paths in mono- and bichromatic line arrangements in the plane

Carregant...
Miniatura
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Editor

Tribunal avaluador

Realitzat a/amb

Tipus de document

Text en actes de congrés

Data publicació

Editor

Condicions d'accés

Accés obert

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

We show that in every arrangement of n red and blue lines | in general position and not all of the same color | there is a path through a linear number of cells where red and blue lines are crossed alternatingly (and no cell is revisited). When all lines have the same color, and hence the preceding alternating constraint is dropped, we prove that the dual graph of the arrangement always contains a path of length (n2).

Descripció

Persones/entitats

Document relacionat

Versió de

Citació

Aichholzer, O. [et al.]. Cell-paths in mono- and bichromatic line arrangements in the plane. A: Canadian Conference on Computational Geometry. "Proceedings of the 25th Canadian Conference on Computational Geometry". Waterloo: 2014, p. 169-174.

Ajut

Forma part

DOI

Dipòsit legal

ISBN

ISSN

Altres identificadors

Referències